Component Based Softwar e Engineering —a new resur gence?

Prabha Anantaram

been successful ? What is its current status?

The concept of “ components” and “ component-based software engineering” has been in existence for a
long time. When it first appeared in the form of design patterns and later transformed into components and
component-libraries it was projected as “ the technology” to reduce core development-time issues. Has it

Introduction

The idea that software should be componentized, had its
origins in the processes followed by manufacturing
industries, wherein large machines or systems are
assembled using many off-the-shelf components. Douglas
Mcllroy’s address at the NATO conference on software
engineering in 1968, first discussed the concept of mass
produced software components. Subsequently, many
attempts have been made to create off-the-shelf software
components that are readily pluggable and usable in the
development of new applications. Initialy, component-
based software engineering did not take off. However,
with component architectures like Microsoft's Object
Linking and Embedding (OLE) and Component Object
Model (COM), IBM’s System Object Model (SOM) and
Sun's JavaBeans technology appearing in the
marketplace, component technology received afillip.

On the face of it, Component-Based Software
Engineering (CBSE) seems to have gone through the first
four stages of the new technology “hype cycle’ defined
by Gartner Group — a curve depicting “Technology
Trigger”, “Peak of Inflated Expectations’, “Trough of
Disillusionment”, “Slope of Enlightenment” and “Plateau
of Productivity”. Some of the other less-fortunate
technologies like the “dot-com based ebusiness’ to the
more exotic “artificial intelligence” did not make it
beyond the third or fourth stage. The highly appealing
concept of assembling applications from pre-fabricated
software components, provided the components are well-
defined and properly-packaged, is driving the investment
of effortsin componentization.

The Software Engineering Institute of CMU has broadly
defined software component as “an implementation, in
software, of some functionality that is reused as-is in
different applications, and accessed via an application-
programming interface”. By this definition, large-grained
components, that are typically ‘subsystems (like a
customer-problem-handling subsystem), do not qualify to
be considered as a component. As organizations build
new applications, they use techniques and processes to
identify, customize and reuse components in that

application. Component-Based Software Engineering
(CBSE) deals with the development of software systems
from reusable components, the development of reusable
components, and system maintenance by means of
component replacement and customization. With IT
becoming more critical to business performance, new
applications of IT in business processes are emerging
daily. The complexity and variety of business processes
are also undergoing a rapid change due to the changing
patterns of global businesses. For exanple, nowadays one
finds Insurance companies offering regular insurance
together with money-investment services, or Travel
management companies offering travel planning together
with hospitality services. This in-turn makes systems
more complex and also demands more and better quality
softwarein the shortest possible time.

Component technology dms to address the above aspect
in various ways. Firstly, it offers pre-fabricated set of
components that can be used to provide ready
functionality to parts of an application. For example, let
us say that we want to build a travel application. In such
an application, the COUNTRY-STATECITY code is an
important component. Now instead of writing new code
to implement COUNTRY as a drop-down-box that would
list al countries one could possibly visit, followed by a
drop-down-box for the respective STATES in that
country and then the CITIES in that state, one could use
an off-the-shelf component that provides such
functionality. Secondly, component technology raises the
level of abstraction of system building by allowing the
developer to demarcate the application into levels of parts
that could be used to compose the application. It should
be noted that it is not necessary to have the data packaged
into the component. Data could always be retrieved from
a database. For example, in the COUNTRY-STATE
CITY component, the data on countries, their states and
cities could come from a database, while the component
could encapsulate the functionality of ‘querying’ the
database, displaying the data, allowing selection, search
on that data etc. To cater to specific requirements,
components usually alow customization of their
functionality. Users may also be able extend the
functionality for additional business requirements.

Master Data M anagement and Business Components

Master Data Management (MDM) isa new focus area for
many enterprises across the world. As enterprise systems
grow in size and volume, the ‘ core business information’
consisting of business entities such as customers,
products, locations, currencies, payment terms and so on,
have been observed to increase rapidly, and in the
process, they get scattered and go out-of-sync. Over time,
the master data and its access become inconsistent,
inaccurate, and buried in data transection structures,
databases, etc. Inconsistencies arise in the way critical

business calculations related to master data are carried out
across the enterprise systems. Organizations are unable to
perform analysis of entities such as customer, vendor or
item across all relevant enterprise systemsincluding sales,
services, manufacturing and regional enterprise resource
planning (ERP).

The lack of a single consistent enterprise mechanism to
manage comprehensive core information results in
incorrect answers in business processes. The cost of this
inconsistency can be enormous for the business
enterprise. MDM provides mechanisms to achieve
consistent, comprehensive and core information across an
enterprise.

Business components can provide the MDM
infrastructure with a repository that contains metadata
about enterprise information, and common business
processes and workflows for maintaining the information.
For example, a payment methods component would
encapsul ate various payment methods and their processes,
or a currency component would encapsulate the data and
processes to do currency conversions, etc. This reduces
the need for each application to have its own business
logic and process to operate on the core data. Moving
core business logic and processes out of applications into
the infrastructure components corrects the process of
creating and maintaining master data. For example, in the
sales, marketing and customer service functions, master
data can consist of customer numbers, service codes,
warranty information, distribution information and partner
information. In the supply chain function, master data
might include information on products, item codes and
suppliers. In the finance function, master data might
include information on cost centers, department codes and
company hierarchies. Thus, reusable business components
form a key aspect for effective MDM.

Designing Business Components
The major issues in designing business components are;

1) What part of the application domain should be made
into components?

2) What are the reusable units that can be packaged as
components?

3) How should it be packaged? How can the
components be customized?

4) How can components be extended for new
reguirements of data and functionality?

We discuss the above issues with examples from BitSlice,
a suite of business components built with the vision of
‘Composing business applications from business
components'.

1) What part of an application domain should be made
into components?

To determine parts of an application domain that should
be made into components, we should analyze design
patterns across typical business applications, and find out
portions that show less variance in functionality, are
repeated in amost al business systems, yet critical to
systems building. These should be the idea ‘first’
candidates for componentization. ‘Master Data’, as has
been stated earlier, forms the ‘Core business entities' of
the Organization. They are present in amost al business
systems and form the backbone of the enterprise system.
They represent the business rules and policies. They are
used throughout the system, critical calculations are
performed on business transactions and reports using this
data, and so their criticality cannot be overstated. From a
component point of view, the design and code patterns
that deal with the management and usage of Master Data
is so similar across business applications that they lend
themselves to easy componentization.

The BitSlice-Core encapsulates design patterns for
processing and maintenance of Master Data into a set of
‘abstract classes' with well defined ‘APIS. The core
contains generic components that can be used across a
variety of application systems. These components provide
a uniform and consistent service layer for processing and
maintenance of ‘Core Business Entities’. The BitSlice
suite of components extends this core and has Master
Data components for typical business functions such as
sales, purchase, order processing, deliveries and
payments. The Core can be extended to create component
sets n the Master Data domain for verticals such as
Banking, Insurance, Customer Care and many other
business domains.

2) What are the reusable units that can be packaged as
components?
To find out the reusable units, we need to partition the
domain into the typical architectural layers of Ul,
business object and database. Next, we need to build
classes in each layer using the GO methodology for
analysis, modeling, design and implementation. Once this
is done, we then need to identify small, self-contained

functional units that are frequently reused both within and
across applications. For each such unit, we pick out
relevant classes from within and across the architectural
layers and package them as ‘abstract components’. We
then extend these ‘abstract components’ to make concrete
business components for ‘Master Data’ pertaining to a
particular business domain. BitSlice identifies seven
types of key reusable components for providing Master
Data Services, viz. Data Selection Lists, Business Lists,
Business Object Components, Business Object Lists,
Maintenance Components, Database Components, and
Higher level Component Assemblies. Given below are
some examples of these types from the domain of Sales.

Data Selection Lists These are multi-column combo
boxes packaged with [Zenat
business data obtained at | o
runtime from adatabase of [gj@hT
“Core Business |caoo
Information”. A Payment |credit1
Terms choice list is [Credit
shown.

Cash On Delivery ™ |

Cash On Delivery
Cash On Deliveny
Fayment after 30 d...
Fayment within 50 ...

Business Lists Business lists provide a tabular view of
Business Information and can be used to view and/or
operate on core information such as credit policies,
currency rates, delivery terms, discounts, payment terms,
etc. in accordance with business validations and rules. An
exampleis shown below.

Identifier [&] L]
Name @

Bezcription

Cash On Deli...
cor Cash On Deli.. |0
Crediti Fayment afte...[30
Credit? Paymentwit... |50 [} Insert
m Delate
[F mModity

@ Unda Dalate

[ﬂ'} [Delete Permanenthy

Delete Al Marked

Business Object Components Business object
components provide crucial services like business
validations, maintenance of information structure and
business computations. For e.g., the Payment Term
Business Object does typical computations such as
calculation of payment due date on a given sale/purchase,
calculation of the status of a sale/purchase whether
due/overdue/just due, calculation of number of days after
which payment is due/overdue, calculation of interest on
overdue payments, etc. Likewise, the Discount Business
Object does discount calculations based on typica
discount schemes. These non-visual components form the

backbone of the master data system and usage of such
components will ensure consistent master data structure
and processing throughout the enterprise. Thisis bound to
impact quality levelsin all IT systems of the organization.

Data Maintenance Components These components can
be used to make changes on Business data consistent with
business rules and policies. They make use of underlying
business object components to deliver data, perform
maintenance operations, business validations and
define/maintain information structure. A sampleis shown.

Inzert Discount ’E
Identifier Festival

Mame Festival dizcount

Created By:

% Dizcount: 15

Flat Discount Amount™ Falze :
Flat Digcount® 7 True :
Variable discount %7 Falze :
Crescription:

Flat diszount of 15% offerad forthe Diwali season

‘ Save | |){ Cancel|

Component Assemblies Assemblies composed from
lower level components address a larger business
functionality. [R]
However, since

they are composed = Paymert Term: | Creciit

from lower level Delivery Date: | 12-12-2005
components, they = Credit Days: 30

have a flexible

structure and can be Due Date: 01-11-20086
detached and | Status: Overdue

reassembl ed D ithin: 1] days
according to user = GwerDueBy: | 30 days

needs. A Payment
Card Assembly is
shown above.

3) Packaging, Usablility and Customization

Packaging involves providing well-defined and
adequately documented APIs, adhering to a technical
component standard and ensuring that the components
integrate easily into popular IDEs (Integerated
Development Environments) used in Industry. The
BitSlice components have been packaged as Java Beans
and integrate into popular Java IDEs such as‘ Sun Studio’,
‘Eclipse’, etc. Extensive sets of high and low level APls
are provided to cater to different forms and levels of
usage. For e.g., a PaymentTermChoiceList component can

be created with a single line of code using the following
high level API:

PaymentTermChoiceList = new PaymentTermChoiceList();

This single line of code creates a drop down list that is
filled in with the latest list of payment terms from a
database of master data, the list positioned on the most
commonly used Payment Term. Thisis ready to be added
to (or plugged into) any form with no further
programming.

The following code will create a PaymentCard showing
details of payment status, due/overdue days, given a
Payment Term and the ‘Delivery date’ which is the date
on which goods were delivered:

PaymentCard p1 = new PaymentCard(*COD”, “21/01/06");

A component set should cater to three types of usage:

a) Components used as-is

b) Components customized for various in-built
properties and used

c) Components extended using a well-defined extension
process

Good usability requires all the three usage mechanisms.

Customization could mean cosmetic changes to the Ul, or
typical functional changes, or building in alarge chunk of
additional requirements of data and functionality.
Customizable properties fall into two categories. a) User
Interface properties (this is relevant for visual
components) and b) Functional properties. BitSlice
provides an online customizer through which a
component’s properties can be customized and the
customized version of the component can then be stored
and used in a particular application development.
Commercial IDEs too provide online interfaces through
which third party components can be customized during
the design process and the customized version used
during development. Components can also be customized
at runtime by using the component’s APIs to set the value
of properties.

4) Extending the Component

Requirements within and across Organizations are bound
to change with time, and components must provide a
mechanism whereby the additional requirements can be
built in easily. Typically additional requirements may
translate into additional tables, additional columns in
existing tables, changes to / additions to existing
functionality. The BitSlice Core can be extended to build
additional component sets for new business domains. The
concrete components can also be extended for additional
requirements. Both types of extensions can be done using
a well defined extension process. BitSlice provides

mechanisms for extending different types of components
for different requirements scenarios. It also comes with
test suites for different types of components. The
extended components can be retested using these test
suites.

Having factored out components addressing the ‘Core
Business Information’ domain, the next step would be to
factor out components in the ‘Business process and
‘Business transaction’ domain using a similar approach.
Proceeding in this way for the entire application domain,
one can visualize a conponent set that would make the
goal of ‘assembling software’ become areality. Extending
the core for a number of verticals will create a market
place that is rich in components for Master Data
Management.

Conclusions

The use of software components is well-established in
diverse business application domains, and Component-
based software engineering has become a redistic and
viable proposition. CBSE is adding a lot of value to rapid
application development and is actively contributing to
better quality software systems. With MDM gaining wide
focus, component-based software engineering is
undergoing resurgence. Software component technology is
widely seen as the best means of achieving the gains in
programmer productivity, system flexibility, and overall
system quality required by the I T revolution.

References

1. Len Bass, Charles Buhman, Santiago Comella-
Dorda, Fred Long, John Robert, Robert Seacord, Kurt
Wallnau, Volume |I: Market Assessment of
Component-Based Software Engineering, Technical
Note, CMU/SEI-2001-TN-007, Carnegie Mellon
University, 2001.

2. Felix Bachmann, Len Bass, Charles Buhman,
Santiago Comella-Dorda, Fred Long, John Robert,
Robert Seacord, Kurt Wallnau, Volume I1: Technical
Concepts of Component-Based Software
Engineering, 2" Edition, Technica Report,
CMU/SEI -2000-T R-008, ESC-T R-2000-007,
Carnegie Mellon University, 2000.

3. Kurt C. Wallnau, Software Component Certification:
10 Useful Distinctions CMU/SEI-2004-TN-031,
Carnegie Mellon University, 2004.

4. Alexander Stuckenholz, Component Evolution and
Versioning: State of the Art, Forschungsberichte des
Fachbereichs Elektrotechnik & Informationstechnik,
ISSN 0945-0130, 2/2004.

5. http://www.compositesoft.com/BitSice.html
Composite Software Systems, 2006.

