

COMPONENT SUITE

Building Business Applications from

Business Components

COMPOSITE SOFTWARE SYSTEMS

BitSlice Component technology

offers pre-fabricated set of

components that can be used to

provide ready functionality to an

application. BitSlice components

raise the level of abstraction of

system building by allowing the

developer to demarcate the

application into levels of distinct

functionality that could be stitched

together to compose the application.

Packaged as a set of readymade

business components encapsulating

business functionality, these

components can be easily plugged

into an application thereby saving

many lines of code. With the help of

these components the software

development process gets a head

start and business applications can

be built quickly and efficiently.

Significant savings can be realized

in the stages of analysis, design,

development and implementation.

The application becomes more

reliable, robust and of higher quality.

BitSlice components have been

used in various domains and have

been extended to cater to special

application requirements.

Productivity improvements and effort

reduction of upto 30% have been

measured in certain project

environments !

The BitSlice component set can be

used for building business

applications in areas such as

Trading, Manufacturing, Banking,

Insurance, Health Care, Accounting,

Transportation and many other

business domains.

HIGHLIGHTS

BitSlice components address the Core Business Information needs of

Organizations.

Core Business Information consists of data and processes that are pivotal to

all information systems within an organization. The core consists of business

entities such as organization structure, operating units, customers, products,

selling policies, buying policies, locations, currencies, delivery terms, payment

terms, discount schemes and so on. Further, business computations such as

calculation of outstanding collections, overdue amounts, calculation of interest on

overdue amounts, conversion of amounts to local currency, calculation of

currency gain/loss, inventory valuation, lead times for manufacturing, tax

calculations form part of core business information processing functionality.

BitSlice-Core encapsulates design patterns for processing and maintenance of

Core Business information into a set of ‘abstract classes’ with well defined ‘APIs’.

The BitSlice-Core contains generic components that can be used across a

variety of application systems.

The BitSlice suite of components extends this core and provides ready-made

components for typical business functions such as sales, purchase, order

processing, deliveries, payments, customers, products and static information

such as countries, states, cities and so on.

The BitSlice Components are in the form of:

Data Selection Lists (e.g., currency selection, discount selection)

Business Lists (e.g., customer business list, product list)

Business Object Components incorporating business logic, validations

and computations (e.g., Payment Term, Carrier)

Data maintenance components (e.g. product, tax maintenance)

Database components (e.g., currency table creation, table load)

Higher level ‘Component Assemblies’ (e.g., payment card, address)

Higher level ‘Component Sub-systems’ (e.g., currency sub system)

These components can be easily plugged into web pages, application forms /

windows to build web based / intranet / desktop applications. The back end

business object components can be used to perform critical business

calculations and ensure that data is valid and consistent with business rules.

HIGHLIGHTS

BitSlice components provide an infrastructure of business data and functionality

for any business system development. They remove the burden of design and

development of Core business information modules altogether from the

development process thereby providing savings in time and cost while enhancing

system quality.

As enterprise systems grow in size and volume, the ‘core business information’

have been observed to increase rapidly, and in the process, they get scattered

across application systems and go out-of-sync. Over time, the master data and

its access become inconsistent, inaccurate, and buried in data transaction

structures, databases, etc. Inconsistencies arise in the way critical business

calculations related to master data are carried out across the enterprise systems.

Organizations are unable to perform analysis of entities such as customer,

vendor or item across all relevant enterprise systems including sales, services,

manufacturing and regional enterprise resource planning (ERP).

The lack of a single consistent enterprise mechanism to manage comprehensive

core information results in incorrect answers in business processes. The cost of

this inconsistency can be enormous for the business enterprise.

BitSlice component set helps reduce this inconsistency by providing a set of well-

packaged functionality that ensure that the master data remains in sync and is

extended as and when required.

Master Data Management (MDM) provides mechanisms to achieve consistent

and comprehensive information across an enterprise. BitSlice business

components can provide the MDM infrastructure with a repository that contains

metadata about enterprise information, and common business processes and

workflows for maintaining the information.

For example, a payment methods component would encapsulate various

payment methods and their processes, or a currency component would

encapsulate the data and processes to do currency conversions, etc. This

reduces the need for each application to have its own business logic and process

to operate on the core data. Moving core business logic and processes out of

applications into the infrastructure components corrects the process of creating

and maintaining master data.

ENTERPRISE SYSTEMS

MASTER DATA MANAGEMENT

SALIENT FEATURES

 BitSlice components are easily plugged into web pages, application

forms/windows to build web based / intranet / desktop applications

 An Online Customizer is provided through which each component can be

customized for various features and the customized version may be used in

an application or assembly.

 Customization can also be done using the customizer provided by the IDE

 Customizable features includes user interface (look-and-feel) features as well

as functional features

 Integrates into IDE for Java such as Eclipse, Sun Studio and IDE for

Microsoft platforms such as Visual Basic, Visual C++

 Component set can be extended for Vertical business domains

 All components are provided with easy-to-use high level APIs.

For e.g., a currency selection list can be created with a single line of code,

such as:

CurrencyChoiceList c1 = new CurrencyChoiceList();

This line of code will create a selection list of currencies obtained from a

database of core business information. The list is ready for the user to

make a selection of currency.

 Users can pick-and-choose components that they wish to use

 Components can be used as is by embedding them or they may be extended

 Components can be extended both for additional methods and additional

data requirements

 Components are available both on Java and Microsoft platforms

 Components available as Java Beans and Class Libraries on java platforms

and as COM and Active-X components on Microsoft platforms.

BitSlice-Core can be extended to build component sets

for any vertical business domain.

A complete Customer support Product, called

PowerCare has been built using BitSlice component set.

COMPONENT SET

 BUSINESS OBJECT COMPONENTS

Business Object Components encapsulate business logic and calculations on

Core Information. An example is shown below.

Business object components provide crucial services like business validations,

maintenance of information structure and business computations. For example,

the Payment Term Business Object does typical computations such as

calculation of payment due date on a given sale/purchase, calculation of the

status of a sale/purchase whether due/overdue/just due, calculation of number of

days after which payment is due/overdue, calculation of interest on overdue

payments, etc.

Likewise, the Discount Business Object does discount calculations based on

typical discount schemes. These non-visual components act as independent

agents to provide data and services via APIs to other application units. They

form the backbone of business applications and can be used throughout the

application systems on various units such as business transactions, reports,

online queries, etc. Usage of such components will ensure consistency in

business validations, calculations and information structure.

Some of the services provided by Business Object Components are:

 Maintenance functions (Add, Delete, Modify, View)

 Definition and Maintenance of Information Structure

 Business Validations

 Provision for Logical and Physical delete

 Provision for Refreshing the component at any point in time

 Maintaining Date and timestamp of modifications

 Duplicate checking on Names

 Methods for Decoding

 Multi-User operation and Concurrency control

Net amt = gross amt – discounts –taxes

Payment due date = delivery date + credit days.

Amount in base currency = amount in foreign currency *

exchange rate

 BUSINESS OBJECT COMPONENTS

 Maintaining Referential Integrity

 Operations on a single business object and/or obtaining lists of objects

 Overloaded constructors provided so that the object can be instantiated

based on Name, Identifier or any other parameters as relevant

 Creation of a Business Object with data retrieved from the database is a

single step process through a single line of code, for example:

Currency c1 = new Currency(USD);

The above statement will retrieve the rates and other details of the currency

‘U.S. Dollar’ from a database table of currencies and return a Currency

object with details filled in. This object may then be used to perform any

computations as required.

 Business Computations

 Standard business computation logic is provided with business

components. For example,

 Some of the computations provided by the Payment Term Object

are:

 Calculation of Payment Due Date on a given Sale/Purchase

 Calculation of status of a sale or purchase: whether due/not

due/overdue

 Calculation of no. of days after which the payment is due

 Calculation of no. of days by which payment is overdue

 Calculation of Interest on overdue amounts

 Calculation of overdue range in which this amount falls

 Calculation of due range in which this amount falls

 Some of the computations provided by the Currency Object are:

 Computation of currency rate as of a particular date/time

 Currency rate history

 Calculation of base currency amount

 Conversion of amounts between currencies

 Calculation of currency gain/loss due to a sale amount in

given currency

 Varying number of digits after decimal, varying currency

formats

 Business calculations in given Currency

 Base Currency setting

 Truncation / Roundoff methods

 Conversion of Amounts to words in desired currency

 DATA MAINTENANCE COMPONENTS

Data Maintenance components can be used to make changes on Business data

consistent with business rules and policies. They make use of the underlying

Business Object Component to deliver validated data, perform Maintenance

operations, Business Validations and define/maintain the information structure.

They can be embedded into any kind of UI container. Data Maintenance

component can be plugged into maintenance modules and business

transactions. A sample component is shown below.

The following Maintenance activities are supported on all types of Core Business

Information:

 Insert

 Modify

 Delete (Logical Delete)

 Undo Delete (undo logical delete)

 Delete (Permanent delete)

 Delete all Logically deleted records

The components can be customized for look-and-feel and functional features.

Creation of a Maintenance component with data retrieved from the database is a

single step process through a single line of code, for e.g.:

CurrencyModify c1 = new CurrencyModify(“USD”);

The above statement will retrieve the rates and other details of the currency ‘U.S.

Dollar’ from a database table of currencies and return a Currency Modify object

(a UI panel) with details filled in. This object may then be embedded into any

kind of UI container allowing for user interactions on it.

 DATA SELECTION LISTS

Data selection lists are multi column combo lists packaged with business data

retrieved at runtime from a database of ‘Core Business Information’. These

components can be directly plugged into business transactions such as orders,

invoices, payments, cheques, etc in order to make selections on relevant

business data. They can be plugged into parameter selection units for reports

and queries.

They make use of the underlying Business object Components to provide

validated data from the database. They can be embedded into any kind of UI

container.

Currency selection list can be plugged into

any transaction / report generation unit

where currency of sale / purchase has to be

selected

All data selection lists are provided with an optional Refresh button that can be

used by end-users to refresh the list as and when required. APIs are also

provided for refresh which can be used by the container to refresh all contained

components.

The lists can be customized for functional features such as:

 Columns that should appear on the list

 The sort order of the list (whether by name or identifier)

 The entry that should be selected by default

 Whether or not the refresh button should appear alongside the list user

refresh

Lists can be also be customized for look-and-feel features such as colors, fonts,

etc.

Creation of a selection list component with data retrieved from the database is a

single step process through a single line of code, for e.g.:

CurrencyChoiceList c1 = new CurrencyChoiceList(“USD”);

The above statement will retrieve a list of currency objects with details from a

database table of currencies and return a Currency selection list object (a UI

panel) with list of currencies filled in. The selection list may then be embedded

into any kind of UI container allowing for user to make a selection on currency.

 BUSINESS LISTS

Business Lists provide a tabular view of Business Information retrieved at run-

time from the database. They can be used to view and/or operate on Core

Business Information such as Credit policies, Currency rates, Delivery terms,

discounts, payment terms, etc. in accordance with business validations and

rules. They make use of underlying Business Object Components to display and

update data. A sample business list is shown below.

All Business lists are provided with an optional Refresh button that can be used

by end-users to refresh the list as and when required. APIs are also provided for

refresh which can be used by the container to refresh all contained components.

Search by Id/Name is available on the list. The list can be made editable and

maintenance activities may be carried out on the list.

Business lists can be customized for functional features such as:

 The sort order of the list (whether by name or identifier)

 Whether or not the list is editable

 Whether or not the refresh button should appear alongside the list for

user refresh

They can also be customized for various look-and-feel characteristics such as

colors, sizes, fonts, graphics, etc.

Creation of a business list component with data retrieved from the database is a

single step process through a single line of code, for e.g.:

CurrencyBusinessList c1 = new CurrencyBusinessList();

The above statement will retrieve a list of currency objects with details from a

database table of currencies and return a Currency business list object (a UI

panel) with list of currencies and their details filled in. The business list may then

be embedded into any kind of UI container allowing for user to view or make

changes on currency.

 COMPONENT ASSEMBLIES

Assemblies are composed from lower level components and are larger in terms

of the scope of business functionality offered by them. However, since they are

composed from lower level components, they have a flexible structure and can

be detached and reassembled according to user needs. Assemblies can be

visual / non-visual and make use of other components such as Data selection

lists, Business Lists, Business Object Components, Maintenance Components

and/or other Assemblies in their composition. They make use of underlying

Business Object Component to deliver the data and computations.

The Payment card assembly is capable of calculating and displaying credit and

payment details such as payment due date, status of payment, the number of

days by which a payment is due/overdue, etc. Customized versions of this

Assembly can be used to calculate and display the payment details of Sale or

Purchase transaction.

Payment card component

shows status of payment

on any sale that has taken

place.

The Currency card assembly calculates all invoice amounts in local and foreign

currency and calculates the currency gain/loss incurred on the business

transaction. Customized versions of this Assembly can be used to make

currency related calculations on business transactions.

Currency card component shows the

invoice amounts in local and invoice

currency

 COMPONENT ASSEMBLIES

Assemblies like all other components can be customized and embedded into any

kind of user interface. Higher level components / assemblies are themselves built

from smaller components. Components going into the higher level unit can be

individually customized and these can be used to form the higher level unit by

providing the name of the customized bean to the higher level unit. This process

can be repeated any number of time, making the customization process highly

flexible.

 DATABASE COMPONENTS

Database components are used to create tables and load business data

pertaining to ‘Core Business Information’ in the application database. BitSlice

can be used with any relational database along with the appropriate JDBC driver.

Database components are in the form of:

 Database Connection component. This can be customized to connect

to the user’s database

 Table creation component

 Table Load component

 Components to update specific data where relevant, for e.g., updating

of currency rates in the currency table

The component set comes with sample data where relevant, e.g., Payment

methods, Credit cards, Payment terms, Delivery terms, Countries, States, Cities

and so on.

Database components makes use of the underlying Business Object Component

to validate data while doing insertions and updates.

COMPONENT SETS FOR VERTICAL SEGMENTS

For any vertical business segment, for example, Insurance, Banking, etc., such

a component set consisting of ‘Business Objects’, ‘Data selection lists’,

‘Business lists’, ‘Maintenance components’, ‘Component Assemblies’ and

‘Database components’ may be created for ‘Core business information’ by

extending the BitSlice core abstractions.

The extended component set would provide a uniform service layer for core

business information.

CUSTOMIZATION

All components in BitSlice are customizable by the user. Customization can be

done by changing the values of customizable properties associated with a given

component. The components may be used as java beans /com components /

active-x controls or class libraries. The components can be integrated into any

IDE for Java or Microsoft platform and can be customized using the

customization mechanism provided by the IDE. Alternatively, BitSlice comes with

its own customizer that is a stand-alone java application and this can be used to

customize the component. Given below is a snapshot of the BitSlice customizer

being used to customize the ‘Currency Business List’ component:

Customizable properties fall into broadly two categories

- Properties that control the look-and-feel of the component. These are

relevant for visual components

- Properties that control the behavior of the component. This is relevant

for all components

If the components are used as class libraries, they can be customized using the

APIs provided. The properties can be set as soon as the class is instantiated in

the application.

CUSTOMIZATION

Higher level components / assemblies are themselves built from smaller

components. In such cases, the components going into the higher level unit can

be individually customized and these can be used to form the higher level unit by

providing the name of the customized bean to the higher level unit. This process

can be repeated any number of times.

The application has been partitioned into three typical architectural layers, viz.

User Interface, Business Logic and Database layers as shown. In each layer,

abstract classes have been built to encapsulate the typical requirements of 'Core

Business Information' pertaining to that layer.

For example, the classes BusinessObject and StaticData are abstract classes

that provide services related to Business Objects in general. The class

StaticDataChoiceList is an abstract class that provides services related to drop-

down combo selection lists. The class StaticDataMaintenance and

StaticDataInsert are abstract classes that provide services for user insertion of

data.

Small, self-contained functional units that are frequently reused both within and

across applications have been identified. For each such unit, relevant classes

from within and across the architectural layers have been picked out and

packaged as ‘abstract components’.

The abstract components have been extended to build concrete business

components in generic areas across application domains and specific areas in

the Trading and Manufacturing sectors. For e.g., the class 'Currency' is an

extension of StaticData class and can be used in any application that deals with

multiple currencies. Similarly, the class CurrencyChoiceList is an extension of

StaticDataChoiceList and can be used on any transaction / report where a choice

needs to be made on Currency.

ARCHITECTURE

ENGINEERING

 Components engineered using O-O technology

 Java language used for development

 'Abstractions' built for Core Business Information

 Components built by extending the 'Abstractions'

 CLASS DESIGN

O-O techniques have been extensively used to build robust high level

abstractions for processing of Core Business Information. Thus, the total lines of

code written is minimal thereby ensuring high degree of Quality and

Maintainability.

Every Business object ‘knows’ and ‘Maintains’ Audit information about how and

when it got created and last modified.

Each Object fully validates itself while being constructed with information and

before any addition/update to database, irrespective of whether the object was

validated by the UI or not. Thus the Business Object layer will ensure that it is

updated correctly and can be re-used independently, for e.g., in Export / Import

of data.

Constructors are overloaded to construct either an empty Object or construct an
Object that is filled with data based on Object identifier. This minimizes the code
that the user needs to write.

All Objects provide ‘Refresh’ API to refresh itself with the latest information from
the database. The visual objects are also provided with a ‘Refresh’ button that
can be used to refresh the UI by the end-user.

Multiple design strategies built in as overloaded/ Additional methods, for e.g.,
Logical and Physical deletes, Field level and screen level edits, Re-validations
for Concurrency control, etc.

Persistent classes are separated out.

Objects validate only data that is owned by it, and not data that comes in as
reference from other Objects in the system; In such cases only checks for
whether the data is mandatory/optional is done.

 ABSTRACTIONS

Design patterns for processing and maintenance of Core Business Information

have been encapsulated into a set of ‘abstract classes’ with well defined APIs.

Some of the abstract classes are Generic Business Object , Static data Class,

Static data list, Business list class and Generic Maintenance classes for Insert,

Modify, Delete, Restore and Physical delete.

Generic Business Object has attributes and build in method protocols for

handling business objects across various domains. Static Data class has method

protocols for operations on ‘Core Business information’. List classes have

method protocols for operations on a list of business objects and for constructing

and operating on business lists. Maintenance classes have method protocols for

maintenance operations on ‘Core Business Information’.

Abstractions standardize the design and build in protocols. The abstract

components can easily be extended to build 'component sets' for specific

vertical segments.

Higher level assemblies too have been put together from components spanning

one or more architectural layers. For e.g., the CurrencyCard, which is a visual

unit that displays sales/purchase amounts in local and foreign currency, makes

use of components in the user interface layer, business object layer as well as

database layer to provide the relevant information on the visual panel.

Java Virtual Machine

Java Plug-in (for visual components in web)

RDBMS, JDBC driver

64MB RAM, 5 MB disk space

Email: composite@compositesoft.com

COMPOSITE SOFTWARE SYSTEMS

 email: composite@compositesoft.com.

 website: www.compositesoft.com

PLATFORM REQUIREMENT

CONTACT

mailto:composite@compositesoft.com
mailto:composite@compositesoft.com
mailto:composite@compositesoft.com
http://www.compositesoft.com/

	BUSINESS OBJECT COMPONENTS
	DATABASE COMPONENTS
	CLASS DESIGN
	Abstractions standardize the design and build in protocols. The abstract components can easily be extended to build 'component sets' for specific vertical segments.
	email: composite@compositesoft.com.

