™

p—
BitSlice

COMPONENT SUITE

Building Business Applications from
Business Components

Tk
L~

COMPOSITE SOFTWARE SYSTEMS

7~ 4
Bitsifee

BitSlice Component technology
offers pre-fabricated set of
components that can be used to
provide ready functionality to an
application. BitSlice components
raise the level of abstraction of
system building by allowing the
developer to demarcate the
application into levels of distinct
functionality that could be stitched
together to compose the application.

Packaged as a set of readymade
business components encapsulating
business functionality, these
components can be easily plugged
into an application thereby saving
many lines of code. With the help of
these components the software
development process gets a head
start and business applications can
be built quickly and efficiently.
Significant savings can be realized
in the stages of analysis, design,
development and implementation.
The application becomes more
reliable, robust and of higher quality.

BitSlice components have been
used in various domains and have
been extended to cater to special
application requirements.
Productivity improvements and effort
reduction of upto 30% have been
measured in certain project
environments !

The BitSlice component set can be
used for building business
applications in areas such as
Trading, Manufacturing, Banking,
Insurance, Health Care, Accounting,
Transportation and many other
business domains.

BitSI‘lcc

BitSlice components address the Core Business Information needs of
Organizations.

Core Business Information consists of data and processes that are pivotal to
all information systems within an organization. The core consists of business
entities such as organization structure, operating units, customers, products,
selling policies, buying policies, locations, currencies, delivery terms, payment
terms, discount schemes and so on. Further, business computations such as
calculation of outstanding collections, overdue amounts, calculation of interest on
overdue amounts, conversion of amounts to local currency, calculation of
currency gain/loss, inventory valuation, lead times for manufacturing, tax
calculations form part of core business information processing functionality.

BitSlice-Core encapsulates design patterns for processing and maintenance of
Core Business information into a set of ‘abstract classes’ with well defined ‘APIs’.
The BitSlice-Core contains generic components that can be used across a
variety of application systems.

The BitSlice suite of components extends this core and provides ready-made
components for typical business functions such as sales, purchase, order
processing, deliveries, payments, customers, products and static information
such as countries, states, cities and so on.

The BitSlice Components are in the form of:

Data Selection Lists (e.g., currency selection, discount selection)

Business Lists (e.g., customer business list, product list)

@ [mj

Business Object Components incorporating business logic, validations
and computations (e.g., Payment Term, Carrier)

Data maintenance components (e.g. product, tax maintenance)

Database components (e.g., currency table creation, table load)

i @ [El

Higher level ‘Component Assemblies’ (e.g., payment card, address)
Higher level ‘Component Sub-systems’ (e.g., currency sub system)

These components can be easily plugged into web pages, application forms /
windows to build web based / intranet / desktop applications. The back end
business object components can be used to perform critical business
calculations and ensure that data is valid and consistent with businessrules.

BitSI‘lcc

BitSlice components provide an infrastructure of business data and functionality
for any business system development. They remove the burden of design and
development of Core business information modules altogether from the
development process thereby providing savings in time and cost while enhancing
system quality.

ENTERPRISE

As enterprise systems grow in size and volume, the ‘core business information’
have been observed to increase rapidly, and in the process, they get scattered
across application systems and go out-of-sync. Over time, the master data and
its access become inconsistent, inaccurate, and buried in data transaction
structures, databases, etc. Inconsistencies arise in the way critical business
calculations related to master data are carried out across the enterprise systems.
Organizations are unable to perform analysis of entities such as customer,
vendor or item across all relevant enterprise systems including sales, services,
manufacturing and regional enterprise resource planning (ERP).

The lack of a single consistent enterprise mechanism to manage comprehensive
core information results in incorrect answers in business processes. The cost of
this inconsistency can be enormous for the business enterprise.

BitSlice component set helps reduce this inconsistency by providing a set of well-
packaged functionality that ensure that the master data remains in sync and is
extended as and when required.

MASTER DA

Master Data Management (MDM) provides mechanisms to achieve consistent
and comprehensive information across an enterprise. BitSlice business
components can provide the MDM infrastructure with a repository that contains
metadata about enterprise information, and common business processes and
workflows for maintaining the information.

For example, a payment methods component would encapsulate various
payment methods and their processes, or a currency component would
encapsulate the data and processes to do currency conversions, etc. This
reduces the need for each application to have its own business logic and process
to operate on the core data. Moving core business logic and processes out of
applications into the infrastructure components corrects the process of creating
and maintaining master data.

BitSI‘lcc

> BitSlice components are easily plugged into web pages, application
forms/windows to build web based / intranet / desktop applications

» An Online Customizer is provided through which each component can be
customized for various features and the customized version may be used in
an application or assembly.

» Customization can also be done using the customizer provided by the IDE

» Customizable features includes user interface (look-and-feel) features as well
as functional features

» Integrates into IDE for Java such as Eclipse, Sun Studio and IDE for
Microsoft platforms such as Visual Basic, Visual C++

» Component set can be extended for Vertical business domains

» All components are provided with easy-to-use high level APIs.
For e.g., a currency selection list can be created with a single line of code,
such as:
CurrencyChoicelList cl = new CurrencyChoicelList ()
This line of code will create a selection list of currencies obtained from a
database of core business information. The list is ready for the user to
make a selection of currency.

» Users can pick-and-choose components that they wish to use

» Components can be used as is by embedding them or they may be extended

» Components can be extended both for additional methods and additional
data requirements

» Components are available both on Java and Microsoft platforms

» Components available as Java Beans and Class Libraries on java platforms
and as COM and Active-X components on Microsoft platforms.

BitSlice-Core can be extended to build component sets
for any vertical business domain.

A complete Customer support Product, called
PowerCare has been built using BitSlice component set.

"
BitSlice

BUSINESS OBJECT COMPONENTS

Business Object Components encapsulate business logic and calculations on
Core Information. An example is shown below.

Net amt = gross amt - discounts -taxes
Payment due date = delivery date + credit days.

Amount in base currency = amount in foreign currency *
exchange rate

Business object components provide crucial services like business validations,
maintenance of information structure and business computations. For example,
the Payment Term Business Object does typical computations such as
calculation of payment due date on a given sale/purchase, calculation of the
status of a sale/purchase whether due/overdue/just due, calculation of number of
days after which payment is due/overdue, calculation of interest on overdue
payments, etc.

Likewise, the Discount Business Object does discount calculations based on
typical discount schemes. These non-visual components act as independent
agents to provide data and services via APIs to other application units. They
form the backbone of business applications and can be used throughout the
application systems on various units such as business transactions, reports,
online queries, etc. Usage of such components will ensure consistency in
business validations, calculations and information structure.
Some of the services provided by Business Object Components are:

» Maintenance functions (Add, Delete, Modify, View)

» Definition and Maintenance of Information Structure

> Business Validations

» Provision for Logical and Physical delete

» Provision for Refreshing the component at any point in time

» Maintaining Date and timestamp of modifications

» Duplicate checking on Names

» Methods for Decoding

» Multi-User operation and Concurrency control

o
BUSINESS OBJECT COMPONENTS BItSI Icc

» Maintaining Referential Integrity
» Operations on a single business object and/or obtaining lists of objects

» Overloaded constructors provided so that the object can be instantiated
based on Name, Identifier or any other parameters as relevant

> Creation of a Business Object with data retrieved from the database is a
single step process through a single line of code, for example:

Currency cl = new Currency (USD);

The above statement will retrieve the rates and other details of the currency
‘U.S. Dollar from a database table of currencies and return a Currency
object with details filled in. This object may then be used to perform any
computations as required.

» Business Computations
» Standard business computation logic is provided with business
components. For example,

% Some of the computations provided by the Payment Term Object
are:

= Calculation of Payment Due Date on a given Sale/Purchase

= Calculation of status of a sale or purchase: whether due/not
due/overdue

= Calculation of no. of days after which the payment is due

= Calculation of no. of days by which payment is overdue

= Calculation of Interest on overdue amounts

= Calculation of overdue range in which this amount falls

= Calculation of due range in which this amount falls

% Some of the computations provided by the Currency Object are:

= Computation of currency rate as of a particular date/time

= Currency rate history

= Calculation of base currency amount

= Conversion of amounts between currencies

= Calculation of currency gain/loss due to a sale amount in
given currency

= Varying number of digits after decimal, varying currency
formats

= Business calculations in given Currency

= Base Currency setting

= Truncation / Roundoff methods

= Conversion of Amounts to words in desired currency

Ip——
DATA MAINTENANCE COMPONENTS BltSI ice

Data Maintenance components can be used to make changes on Business data
consistent with business rules and policies. They make use of the underlying
Business Object Component to deliver validated data, perform Maintenance
operations, Business Validations and define/maintain the information structure.
They can be embedded into any kind of Ul container. Data Maintenance
component can be plugged into maintenance modules and business
transactions. A sample component is shown below.

Insert Currency @
Identifier

Name

Created By:

Rate

Symbol

Country India -
Decimal Places

Decimal Symbol

Units Name

Currency System | Lakhz -

Seperator Symbaol

| Save | ‘x Eancel‘

The following Maintenance activities are supported on all types of Core Business
Information:

% Insert

“» Modify

“ Delete (Logical Delete)

<+ Undo Delete (undo logical delete)
% Delete (Permanent delete)

< Delete all Logically deleted records

The components can be customized for look-and-feel and functional features.

Creation of a Maintenance component with data retrieved from the database is a
single step process through a single line of code, for e.g.:

CurrencyModify cl = new CurrencyModify (“USD”) ;

The above statement will retrieve the rates and other details of the currency ‘U.S.
Dollar from a database table of currencies and return a Currency Modify object
(a Ul panel) with details filled in. This object may then be embedded into any
kind of Ul container allowing for user interactions on it.

o
DATA SELECTION LISTS BItSI I(c

Data selection lists are multi column combo lists packaged with business data
retrieved at runtime from a database of ‘Core Business Information’. These
components can be directly plugged into business transactions such as orders,
invoices, payments, cheques, etc in order to make selections on relevant
business data. They can be plugged into parameter selection units for reports
and queries.

They make use of the underlying Business object Components to provide
validated data from the database. They can be embedded into any kind of Ul

container. Currency Selection
N _ USD _Dallar 1.0 | R

Currency selection list can be plugged into T P e DY
any transaction / report generation unit VEB Bolivar 0.0 B2
where currency of sale / purchase has to be |czi czeshReputl..00 e
selected DEM Deutschematk 2.2193

AED Dirham 0.0

dmil Dallar 0.0

HELD Crallar 7.2003

FILr Crallar 0.0

CAD Dallar 1.6

USD Dollar 1.0 =

All data selection lists are provided with an optional Refresh button that can be
used by end-users to refresh the list as and when required. APIs are also
provided for refresh which can be used by the container to refresh all contained
components.

The lists can be customized for functional features such as:

Columns that should appear on the list

The sort order of the list (whether by name or identifier)

The entry that should be selected by default

Whether or not the refresh button should appear alongside the list user
refresh

YV VVY

Lists can be also be customized for look-and-feel features such as colors, fonts,
etc.

Creation of a selection list component with data retrieved from the database is a
single step process through a single line of code, for e.g.:

CurrencyChoicelist ¢l = new CurrencyChoicelList (“USD”);

The above statement will retrieve a list of currency objects with details from a
database table of currencies and return a Currency selection list object (a Ul
panel) with list of currencies filled in. The selection list may then be embedded
into any kind of Ul container allowing for user to make a selection on currency.

BUSINESS LISTS

7 4
Bitsifce

Business Lists provide a tabular view of Business Information retrieved at run-
time from the database. They can be used to view and/or operate on Core
Business Information such as Credit policies, Currency rates, Delivery terms,
discounts, payment terms, etc. in accordance with business validations and
rules. They make use of underlying Business Object Components to display and
update data. A sample business list is shown below.

Currency List

dentifier | (@& (R
Hame @

Base Currency LSD

BEF

Franc

00212

BEF

CHF

Frane

0.5003

SFr

FRF

Franc

0.1343

FF

NLG

Guilder

03993

DAl

SEK

Krona

0.0942

SEK

Drkks

Krone

0.1142

Dbkl

MOk

Krone

01102

NOK

Zh

Kimacha

0.0

[

TRL

Lira

0.0

TL

m Inzert
m Dalate
[F modisy

gj‘) Undo Delete

rz
5 nE.a Lit T Delete Permanently

Delete Al Marked
@ Set A= Base Currency

ITI

All Business lists are provided with an optional Refresh button that can be used
by end-users to refresh the list as and when required. APIs are also provided for
refresh which can be used by the container to refresh all contained components.
Search by Id/Name is available on the list. The list can be made editable and
maintenance activities may be carried out on the list.

Business lists can be customized for functional features such as:
» The sort order of the list (whether by name or identifier)
» Whether or not the list is editable
» Whether or not the refresh button should appear alongside the list for
user refresh

They can also be customized for various look-and-feel characteristics such as
colors, sizes, fonts, graphics, etc.

Creation of a business list component with data retrieved from the database is a
single step process through a single line of code, for e.g.:

CurrencyBusinessList cl = new CurrencyBusinessList();

The above statement will retrieve a list of currency objects with details from a
database table of currencies and return a Currency business list object (a Ul
panel) with list of currencies and their details filled in. The business list may then
be embedded into any kind of Ul container allowing for user to view or make
changes on currency.

Ip——
COMPONENT ASSEMBLIES BitSlice

Assemblies are composed from lower level components and are larger in terms
of the scope of business functionality offered by them. However, since they are
composed from lower level components, they have a flexible structure and can
be detached and reassembled according to user needs. Assemblies can be
visual / non-visual and make use of other components such as Data selection
lists, Business Lists, Business Object Components, Maintenance Components
and/or other Assemblies in their composition. They make use of underlying
Business Object Component to deliver the data and computations.

The Payment card assembly is capable of calculating and displaying credit and
payment details such as payment due date, status of payment, the number of
days by which a payment is due/overdue, etc. Customized versions of this
Assembly can be used to calculate and display the payment details of Sale or
Purchase transaction.

Pavment Card

I Payment card component
shows status of payment

on any sale that has taken

place.

Paymert Term: | Credit2
Delivery Date; | 23 Jul 2002
Credit Days: B0

Due Date: 21 Sep 2002

Status: Mot due

De Wyithin: G0 davs
CreerDue By] davs

The Currency card assembly calculates all invoice amounts in local and foreign
currency and calculates the currency gain/loss incurred on the business
transaction. Customized versions of this Assembly can be used to make
currency related calculations on business transactions.

I

Base Currency: U=D (5
Currency: MR (R=)
Matme: Rupee
Current Rate: 002170 Currency card component shows the

invoice amounts in local and invoice
Order Amount: F= 3,0000.0 currenc
Order Date: y
Rate On Crder: R=0.02

Amt In Base Currency: $ 651 .03

Currency gainflozsz az of Current Rate: §-5.97

Ip——
COMPONENT ASSEMBLIES BitSlice

Assemblies like all other components can be customized and embedded into any
kind of user interface. Higher level components / assemblies are themselves built
from smaller components. Components going into the higher level unit can be
individually customized and these can be used to form the higher level unit by
providing the name of the customized bean to the higher level unit. This process
can be repeated any number of time, making the customization process highly
flexible.

DATABASE COMPONENTS

Database components are used to create tables and load business data
pertaining to ‘Core Business Information’ in the application database. BitSlice
can be used with any relational database along with the appropriate JDBC driver.

Database components are in the form of:

» Database Connection component. This can be customized to connect
to the user’s database

» Table creation component
» Table Load component

» Components to update specific data where relevant, for e.g., updating
of currency rates in the currency table

The component set comes with sample data where relevant, e.g., Payment
methods, Credit cards, Payment terms, Delivery terms, Countries, States, Cities
and so on.

Database components makes use of the underlying Business Object Component
to validate data while doing insertions and updates.

COMPONENT SET

For any vertical business segment, for example, Insurance, Banking, etc., such
a component set consisting of ‘Business Objects’, ‘Data selection lists’,
‘Business lists’, ‘Maintenance components’, ‘Component Assemblies’ and
‘Database components’ may be created for ‘Core business information’ by
extending the BitSlice core abstractions.

The extended component set would provide a uniform service layer for core
business information.

BitSI‘lcc

All components in BitSlice are customizable by the user. Customization can be
done by changing the values of customizable properties associated with a given
component. The components may be used as java beans /com components /
active-x controls or class libraries. The components can be integrated into any
IDE for Java or Microsoft platform and can be customized using the
customization mechanism provided by the IDE. Alternatively, BitSlice comes with
its own customizer that is a stand-alone java application and this can be used to
customize the component. Given below is a snapshot of the BitSlice customizer
being used to customize the ‘Currency Business List’ component:

B Composite Component Customizer

Browee To Choose A File

- Dmponent Currency CurrencyBusinessList class
';' CrowvnloadCurrency.jar o
@ & cureney Identifier = (A
. Currency.class Mamea @
. CurrencyBusinessList. ||
CurreneyCard.class de & Symba
E CurreneyChaoiceList. ol 2 THBE Baht 0.0 Bht -
. Curenoyinse . olass WEB Bolivar 0.0 B=.
e CurrencyList.class CZK CzechRepukbl...J0.0 C5k 5
. c LogicalDelet DEM Deutschemark |0.4505 Cril Lo
HireneyegivallelEls AED Ditham oo bh
(& comencymodity olass 5 TTD Dollar 0.0 TTH
. Currenc‘y’PhySlcalDeleE s Dollar o0 1%
. Currenc‘y’UnDeIete.cla; TE Dollar 1.0 &
O @ HouseKesping BMD Dollar 0.0 Bd %
g & Laeatian BED Dollar 0.0 B
@ StatichrataManager T Dollar e NTE
@ @& Location
SGh Callar 0.5455 S |
Log @ Currency S -
[. w | MNZD E?Pllar 0.0 HNZE |
‘ e e

editRequired true - 2

aricllineColor Wloop |

headerBackColor B 125,125,129 B

headerFont ke rial Plain 10

headerF oreColor 0,255 255 —

. . = = Serialize As
idzearchiconFilename icDatalanageridsearch .aif

inputFieldBackColar 1 255,255,255

inputFieldBorder Color 192,192,192 (=

Customizable properties fall into broadly two categories

- Properties that control the look-and-feel of the component. These are
relevant for visual components

- Properties that control the behavior of the component. This is relevant
for all components

If the components are used as class libraries, they can be customized using the
APIs provided. The properties can be set as soon as the class is instantiated in
the application.

BitSI‘lcc

Higher level components / assemblies are themselves built from smaller
components. In such cases, the components going into the higher level unit can
be individually customized and these can be used to form the higher level unit by
providing the name of the customized bean to the higher level unit. This process
can be repeated any number of times.

ARCHITECT

The application has been partitioned into three typical architectural layers, viz.
User Interface, Business Logic and Database layers as shown. In each layer,
abstract classes have been built to encapsulate the typical requirements of ‘Core
Business Information’ pertaining to that layer.

\ \ v

User Interface | Business Logic Database

© O O

For example, the classes BusinessObject and StaticData are abstract classes
that provide services related to Business Objects in general. The class
StaticDataChoicelList is an abstract class that provides services related to drop-
down combo selection lists. The class StaticDataMaintenance and
StaticDatalnsert are abstract classes that provide services for user insertion of
data.

Small, self-contained functional units that are frequently reused both within and
across applications have been identified. For each such unit, relevant classes
from within and across the architectural layers have been picked out and
packaged as ‘abstract components’.

The abstract components have been extended to build concrete business
components in generic areas across application domains and specific areas in
the Trading and Manufacturing sectors. For e.g., the class 'Currency' is an
extension of StaticData class and can be used in any application that deals with
multiple currencies. Similarly, the class CurrencyChoiceList is an extension of
StaticDataChoiceList and can be used on any transaction / report where achoice
needs to be made on Currency.

BitSI‘lcc

Components engineered using O-O technology
Java language used for development
'‘Abstractions’ built for Core Business Information
Components built by extending the 'Abstractions’

YV V VYV V

CLASS DESIGN

O-O techniques have been extensively used to build robust high level
abstractions for processing of Core Business Information. Thus, the total lines of
code written is minimal thereby ensuring high degree of Quality and
Maintainability.

Every Business object ‘knows’ and ‘Maintains’ Audit information about how and
when it got created and last modified.

Each Object fully validates itself while being constructed with information and
before any addition/update to database, irrespective of whether the object was
validated by the Ul or not. Thus the Business Object layer will ensure that it is
updated correctly and can be re-used independently, for e.g., in Export / Import
of data.

Constructors are overloaded to construct either an empty Object or construct an
Object that is filled with data based on Object identifier. This minimizes the code
that the user needs to write.

All Objects provide ‘Refresh’ API to refresh itself with the latest information from
the database. The visual objects are also provided with a ‘Refresh’ button that
can be used to refresh the Ul by the end-user.

Multiple design strategies built in as overloaded/ Additional methods, for e.g.,
Logical and Physical deletes, Field level and screen level edits, Re-validations
for Concurrency control, etc.

Persistent classes are separated out.

Objects validate only data that is owned by it, and not data that comes in as
reference from other Objects in the system; In such cases only checks for
whether the data is mandatory/optional is done.

ABSTRACTIONS BitSl [("4

Design patterns for processing and maintenance of Core Business Information
have been encapsulated into a set of ‘abstract classes’ with well defined APls.
Some of the abstract classes are Generic Business Object , Static data Class,
Static data list, Business list class and Generic Maintenance classes for Insert,
Modify, Delete, Restore and Physical delete.

Generic Business Object has attributes and build in method protocols for
handling business objects across various domains. Static Data class has method
protocols for operations on ‘Core Business information’. List classes have
method protocols for operations on a list of business objects and for constructing
and operating on business lists. Maintenance classes have method protocols for
maintenance operations on ‘Core Business Information’.

Abstractions standardize the design and build in protocols. The abstract
components can easily be extended to build ‘component sets' for specific
vertical segments.

Higher level assemblies too have been put together from components spanning
one or more architectural layers. For e.g., the CurrencyCard, which is a visual
unit that displays sales/purchase amounts in local and foreign currency, makes
use of components in the user interface layer, business object layer as well as
database layer to provide the relevant information on the visual panel.

PLATFORM

Java Virtual Machine

Java Plug-in (for visual components in web)
RDBMS, JDBC driver

64MB RAM, 5 MB disk space

Email: composite @compositesoft.com

COMPOSITE SOFTWARE SYSTEMS
email: composite@compositesoft.com.
website: www.compositesoft.com

mailto:composite@compositesoft.com
mailto:composite@compositesoft.com
mailto:composite@compositesoft.com
http://www.compositesoft.com/

	BUSINESS OBJECT COMPONENTS
	DATABASE COMPONENTS
	CLASS DESIGN
	Abstractions standardize the design and build in protocols. The abstract components can easily be extended to build 'component sets' for specific vertical segments.
	email: composite@compositesoft.com.

